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Abstract—Trajectory design for missions to small bodies is
tightly coupled both with the selection of targets for a mission
and with the choice of spacecraft power, propulsion, and other
hardware. Traditional methods of trajectory optimization have
focused on finding the optimal trajectory for an a priori selection
of destinations and spacecraft parameters. Recent research has
expanded the field of trajectory optimization to multidisciplinary
systems optimization that includes spacecraft parameters. The
logical next step is to extend the optimization process to include
target selection based not only on engineering figures of merit
but also scientific value. This paper presents a new technique
to solve the multidisciplinary mission optimization problem for
small-bodies missions, including classical trajectory design, the
choice of spacecraft power and propulsion systems, and also the
scientific value of the targets. This technique, when combined
with modern parallel computers, enables a holistic view of
the small body mission design process that previously required
iteration among several different design processes.

I. INTRODUCTION

Preliminary design of interplanetary missions is a complex
problem which is very expensive in terms of both human-hours
and computer-hours. In any interplanetary mission design, the
designer must select the appropriate launch date, flight time,
maneuvers, and in some cases a sequence of planetary flybys.
The choice of launch vehicle is also partly driven by trajectory
design. If the mission employs low-thrust electric propulsion,
then the trajectory design also includes a time history of
control variables, such as thrust magnitude and direction, and
is tightly coupled with the choice of propulsion and power
systems for the spacecraft.

Missions to small solar system bodies are especially chal-
lenging because in addition to all of the common design tasks
listed above, it is also necessary to choose one or more small
bodies to visit. This process is particularly difficult because
the most scientifically desirable targets may not be the most
reachable and vice versa. In addition, many compelling small
body mission concepts involve visiting several bodies, and
the most compelling bodies may or may not be on similar
orbits. The preliminary design process for such missions
often involves many iterations between planetary scientists,
trajectory analysts, and systems engineers until a target set,
spacecraft, and trajectory are found that are satisfactory. This
process is time consuming and expensive and therefore any
automation that could reduce the cost and increase the quality
of the mission concept is highly desirable. Furthermore, each

trajectory must be evaluated according to both science and en-
gineering metrics. The full small bodies mission optimization
problem is therefore multi-objective and includes both discrete
and continuous variables that define the science targets, the
spacecraft, and the trajectory.

The history of interplanetary trajectory optimization is long
and includes contributions by thousands of authors. A com-
plete survey of the many interesting and useful techniques is
impossible in the context of this paper. Many of the most suc-
cessful techniques have been incorporated into common early-
stage mission design tools [1], [2], [3], [4]. However, most
of the research on the interplanetary trajectory optimization
problem has focused on finding the optimal trajectory for an
a priori chosen sequence of destinations and set of spacecraft
parameters. This is only one piece of the small body mission
design puzzle.

Recent research has employed evolutionary optimization
techniques to solve the problem of choosing not only the
optimal trajectory for a given set of destinations, but also the
choice of intermediate planetary flybys which may increase
the delivered mass to the final science targets for missions
employing either high-thrust chemical propulsion [5], [6], [1]
or low-thrust electric propulsion [7], [2], [8]. Other recent
works have addressed multi-objective optimization of both the
trajectory and the spacecraft design, which are tightly coupled
[9]. Some works have even considered the choice of science
targets [8], [10], [2], and the second through seventh editions
of the Global Trajectory Optimization Contest (GTOC) [11]
have featured the problem of choosing targets for missions
which visit many small bodies. In particular, the sixth edition
of GTOC was a tour of the Galilean moons of Jupiter and
featured an objective function that rewarded trajectories which
flew over as many faces of each body as possible.

However, all of these works have focused on choosing
trajectories and destinations based on engineering metrics, e.g.
∆v, delivered mass, flight time, etc.. To the knowledge of
these authors, no previous integrated scheme has solved the
full coupled problem - the choice of destination, spacecraft
parameters, and trajectory in a multi-objective fashion such
that one of the explicit objectives of the solver is to find the
most scientifically compelling missions.

In this work we present a method which solves the full
coupled problem for small body mission design. The design
problem is posed as a multi-objective hybrid optimal control
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problem (HOCP) with two stages, an “outer-loop” which
chooses candidate values for the discrete parameters such
as destinations, intermediate flybys, and spacecraft systems
options, and an “inner-loop” which finds the optimal trajectory
for each candidate set of discrete parameters. The outer-loop
ranks the candidate missions by several objectives including
both engineering figures of merit such as delivered mass and
flight time and also a scoring system for scientific value.

II. PHYSICAL MODELING

A. Mission Architecture

Three trajectory components or trajectory divisions are
defined in this work: missions, journeys, and phases. A mission
is a top-level container that encompasses all of the events
including departures, arrivals, thrust arcs, coast arcs, and
flybys. A journey is a set of events within a mission that begin
and end at a target of interest. In the context of this work, a
journey begins at either the Earth or a small body and ends
at another small body. Each journey may include any number
of planetary flybys, which split the journey into phases. For
example, NASA’s OSIRIS-REx mission is composed of two
journeys - from the Earth to Bennu and from Bennu back
to the Earth. The outbound journey includes an Earth gravity
assist and therefore has two phases, and the return journey has
no gravity assists and therefore consists of a single phase.

B. Modeling of Dynamics

The dynamics of the spacecraft motion are modeled using
the Sims-Flanagan transcription (SFT), a widely-used method
in which the continuous-thrust trajectory is discretized into
many small time steps, and the thrust applied during each
time step is approximated as a small impulse placed at the
center of the time step [12]. While the number of SFT time
steps necessary to approximate the trajectory with reasonable
accuracy is problem dependent, 10-20 time steps per orbit
about the central body is usually sufficient The SFT, when
used with a nonlinear programming (NLP) problem solver
such as the Sparse Nonlinear Optimizer (SNOPT)[13] and a
suitable initial guess, is very fast and robust. It is considered
to be a “medium-fidelity” transcription and is used in several
industry-standard software packages [2], [3], [4].

In the classical SFT, the optimizer chooses the three com-
ponents of an impulsive ∆v vector at the center of each
time-step. In order to improve the robustness of the solver,
a modified transcription known as “up-to-unit vector control”
[14] is used in this work, where instead of choosing the ∆v
vector directly the optimizer instead chooses a control 3-vector
in [−1.0, 1.0] that is multiplied by the maximum ∆v that the
spacecraft can produce in that time-step. The magnitude of the
control vector is bounded in the range [0.0, 1.0], i.e.,

∆vi = ui∆vmax,i, ‖ui‖ ≤ 1.0 (1)

where

∆vmax,i =
DnavailableT (tf − t0)

mN
(2)

where D is the thruster duty cycle, navailable is the number
of available thrusters, T is the maximum available thrust from
one thruster, t0 and tf are the beginning and ending times of
the time step, m is the mass of the spacecraft at the center
of the time step, and N is the number of time steps in the
phase. This modified SFT is used in Mission Analysis Low-
Thrust Optimization (MALTO), Parallel Global Multiobjective
Optimizer (PaGMO), and in this work.

The spacecraft state is propagated forward from the first
endpoint (i.e. planet) in each phase and backward from the
second endpoint. The trajectory is propagated by solving
Kepler’s equation and the spacecraft mass is propagated by
assuming a constant mass flow rate across the each time-step.
A set of nonlinear constraints are applied to ensure continuity
of position, velocity, and mass in the center of the phase.

The optimizer also chooses the initial and final velocity
vectors for each phase. If a phase begins with a launch, the
magnitude of the initial velocity vector is used with a launch
vehicle model to determine the initial mass of the spacecraft as
described later in this work. If a phase begins with a planetary
flyby, two nonlinear constraints are applied to ensure that the
flyby is feasible. First, the magnitudes of the incoming and
outgoing velocity vectors with respect to the planet must be
equal,

v+∞ − v−∞ = 0 (3)

where v−∞ and v+∞ are the magnitudes of the velocities before
and after the flyby, respectively. Second, the spacecraft may
not fly closer to the planet than some user-specified minimum
flyby distance:

µplanet
v2∞

[
1

sin( δ2 )
− 1

]
− (rplanet + hsafe) ≥ 0 (4)

where

δ = arccos

[
v−∞ · v+

∞∣∣v−∞∣∣ ∣∣v+∞∣∣
]

(5)

Here µplanet is the gravitational parameter of the planet,
rplanet is the radius of the planet, δ is the flyby turn angle,
and hsafe is the user-defined minimum altitude. In the case
of a flyby of a small body without significant gravitational
influence, Equations 3-5 are replaced by:

v+
∞ − v−∞ = 0 (6)

Figure 1 is a diagram of a simple low-thrust mission
to Jupiter with one Earth flyby using the SFT. Here the
Earth flyby occurs approximately one year after launch. The
continuity constraints are deliberately left unsatisfied in the
diagram to illustrate where they must be applied.

The SFT is a compromise between medium-fidelity model-
ing and fast execution. It is ideal for a trade study optimization
such as the problem considered in this work, and solutions
found using the SFT are an excellent starting point for more
detailed analysis once a reference mission is chosen. Typically
the mass delivered by a SFT trajectory is within 1-2% of a
that delivered by a higher-fidelity solution [15].
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Fig. 1: Schematic of a two-phase trajectory using the SFT

C. Launch Vehicle, Propulsion, Power, and Ephemeris Mod-
eling

Low-thrust trajectories are inextricably coupled to the spe-
cific hardware used by the spacecraft. The optimal trajectory
for one combination of launch vehicle, propulsion system,
and power system will not be the optimal trajectory for a
different hardware combination. Realistic modeling of these
three systems and of system margins is therefore applied in this
work. In addition, accurate ephemeris modeling is provided by
the SPICE toolkit [16].

Launch vehicle performance, measured as delivered mass in
kg as a function of C3 in km2/s2, is modeled as a 5th degree
polynomial with coefficients fit to published launch vehicle
performance data[17]. In this work, a simplified thruster model
is applied to compute available thrust T as a function of
available power, fixed propulsion system efficiency η and
specific impulse (Isp),

T =
2ηP

Ispg0
(7)

where Isp and η are defined based on thruster performance.
This is one of several models that may be used for low-thrust
mission designs. Other, more detailed models, are available to
interested readers [2].

The available power P is the difference between the power
generated by the spacecraft Pgenerated and the power required
to operate the spacecraft bus Ps/c,

P = (1− δpower)
(
Pgenerated − Ps/c

)
(8)

where δpower is a user-defined power margin.
In this work, the power delivered by a radioisotope thermo-

electric generator (RTG) system is given by,

P (t) = P0e
(−t/τ) (9)

where P0 is the base power delivered by the RTG on the
day of launch and τ is the decay rate of RTG. The power
required by the spacecraft bus Ps/c is modeled as a constant
in this work. More sophisticated power models suitable for
solar-electric propulsion (SEP) missions are available but are
omitted from this work in the interest of brevity [2].

III. OUTER-LOOP OPTIMIZATION OF THE MISSION
SEQUENCE

The mission design problem in this work is posed as two
nested optimization problems, an “outer-loop” discrete opti-
mization problem and an “inner-loop” real-valued optimization
problem. The outer-loop solves for the sequence variables such
as destinations and flybys, driving temporal variables such as
date and flight time, as well as system parameters such as
power supply size, propulsion system, and launch vehicle. A
“cap and optimize” process is applied to certain outer-loop
parameters such as flight time, allowing the inner loop to vary
those parameters within a maximum or minimum value.

The user specifies a priori a list of outer-loop design
variables and a “menu” of choices with corresponding integer
codes for each. In this work the design variables are spacecraft
systems parameters such as power and/or propulsion, time
of flight, destinations, and planetary flybys that may occur
between small body destinations. The outer-loop algorithm
makes one choice from each menu.

In this work the outer-loop’s ability to select destinations is
particularly relevant. The user specifies a menu of candidate
destinations for each journey. For example, one might wish
to design a mission to two asteroids but have a long list of
scientifically interesting options. The HOCP automaton can
choose the most accessible asteroids. The outer-loop can also
control the number of destinations, and therefore the number
of journeys, by using a “null-gene” technique [1]. In this
technique, the menu of journey destinations is augmented
to include a number of “null” options equal to the number
of acceptable bodies. The outer-loop therefore has an equal
probability of selecting “no encounter” as it does of selecting
an encounter. The same technique is used to select the number
and identity of any planetary flybys that might occur in each
journey. This technique is effective for designing multi-flyby
interplanetary missions and has been used to reproduce the
Cassini [1] trajectory and design an efficient variant of the
BepiColombo trajectory [2].

The user may then select any number of outer-loop objective
functions for optimization. Some of these, such as flight time,
power system size, etc, may be directly related to decision
variables. Others, such as final mass, may be results of an
inner-loop optimization. In the particular context of this work,
the list of objective functions include a science score which is
a function of the destinations chosen by the outer-loop.

The outer-loop constructs an inner-loop subproblem which
is capped according to the information encoded in the outer-
loop decision vector. The inner-loop subproblem is then opti-
mized with respect to a single objective function as chosen
by the user. Finally, the values of the outer-loop objective
functions are extracted from the completed inner-loop solution.

A. Outer-Loop Multi-Objective Optimization via NSGA-II

The goal of the outer-loop, multi-objective algorithm is to
generate a representation of the globally-optimal Pareto front
[18]. The interplanetary, low-thrust trajectory design problem
is almost always a compromise between maximizing payload
mass and minimizing time of flight. When simultaneously
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solving the systems problem, other objectives such as reducing
the base power required for thrusting and minimizing the
number of low-thrust engines become important. Thus, the
globally-optimal Pareto front represents the critical set of
system trade-off solutions desired. However, the system design
parameters are often discrete hardware models and an algo-
rithm that is capable of automated development of the Pareto
front while globally searching the design space is required.
One such algorithm that meets the required characteristics
of an outer-loop systems optimizer is the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) developed by Deb
et al. [19]. Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) has ben shown to be an effective outer-loop solver
for multi-objective, low-thrust optimization in a global-local
hybrid strategy [8], [9]. The NSGA-II is a modification of
the simple genetic algorithm [20], and instead of evolving
the population towards a single solution, genetic operators
(selection, crossover, mutation) steer the population towards
the Pareto front.

The NSGA-II is notably efficient because of the employ-
ment of elitism, in which the superior solutions of the popula-
tion are retained from generation to generation. By performing
a non-dominated ranking of a combined parent-and-offspring
population and filtering for the best solutions, the NSGA-II
can ensure that the individuals that are closest to the Pareto
front are not lost as the population evolves. Additionally,
the NSGA-II incorporates mechanisms to improve population
diversity by ranking individuals in a particular non-dominated
front according to their crowding distance in the solution
space. The particular implementation of NSGA-II used in this
work was developed by Vavrina et al. [8], [9] and provides
improved performance over the original NSGA-II on problems
with more than two objective functions. This is a very useful
feature in this work, where the example problem has five
objectives.

IV. INNER-LOOP TRAJECTORY OPTIMIZATION

In order for the outer-loop solver of an HOCP automaton
to function properly, it must know the values of the objective
functions for each candidate solution. Finding these values is
the job of the inner-loop solver. The inner-loop solver must be
fast and autonomous, because in the context of an automated
HOCP solver there is no opportunity for a human to intervene
to provide an initial guess of the solution. In this work, the
inner-loop solver is a combination of a NLP problem solver
with the stochastic global search algorithm monotonic basin
hopping (MBH).

A. Nonlinear Programming

The optimization of the multiple gravity assist with low-
thrust (MGALT) problem may be formulated as nonlinear pro-
gramming (NLP) problems. NLP problems explicitly model

nonlinear constraints. The optimizer solves a problem of the
form:

Minimize f (x)
Subject to:
xlb ≤ x ≤ xub
c (x) ≤ 0
Ax ≤ 0

(10)

where xlb and xub are the lower and upper bounds on
the decision vector, c (x) is a vector of nonlinear constraint
functions, and A is a matrix describing any linear constraints
(i.e. time constraints).

Almost all low-thrust interplanetary trajectory optimization
problems, are very large, composed of hundreds or thousands
of decision variables and tens or hundreds of constraints.
A large-scale NLP solver such as SNOPT [13] is therefore
required to solve the problems of interest in an efficient
and robust manner. However, SNOPT, like all NLP solvers,
requires an initial guess of the solution and will tend to
converge to a solution in the neighborhood of that initial guess.
The next section will address how the automated method of
this work generates this initial guess in a fully automated
manner.

B. Monotonic Basin Hopping

MBH is an algorithm for finding globally optimal solutions
to problems with many local optima. MBH works on the
principle that many real-world problems have a structure
where individual local optima, or “basins” tend to cluster
together into “funnels” where one local optimum is better than
the rest. A problem may have several such funnels. MBH
has been demonstrated to be effective on various types of
interplanetary trajectory problems [21], [22], [23], [24], [2].
The pseudocode for MBH is listed in Algorithm 1.

V. EXAMPLE

The algorithm described in this work is demonstrated on
a notional mission to survey the Centaurs. The Centaurs are
a class of minor planets that orbit, approximately, between
Saturn and Neptune. The Centaurs are not in resonance with
the gas giants and are therefore on unstable orbits that will
cause them to eventually be pushed into the inner solar
system, collide with a gas giant, or ejected entirely. They may
originally have been Kuiper Belt Object (KBO)s that were
perturbed closer to the inner solar system and may be on their
way to becoming comets. Some Centaurs have shown comet-
like characteristics such as displaying a coma near perihelion.
For the purposes of this example, the Centaurs are of particular
interest because they are more accessible for rendezvous than
the KBOs and may provide a window into the early solar
system using near-term propulsion and power technology.

The Centaurs have bimodal colors: red and blue/gray [25],
[26]. The ideal mission to survey the Centaurs would visit
one of each class. In addition, for the purposes of this
example there are three Centaurs of particular interest: 2060
Chiron, 10199 Chariklo, and 60558 Echeclus. Chiron displays
a coma near perihelion and may have rings [27], Chariklo has
rings [28], and Echeclus recently ejected a large amount of
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Algorithm 1 Monotonic Basin Hopping (MBH)

generate random point x
run NLP solver to find point x∗ using initial guess x
xcurrent = x∗

if x∗ is a feasible point then
save x∗ to archive

end if
while not hit stop criterion do

generate x′ by randomly perturbing xcurrent using a
Pareto distribution

for each time of flight variable ti in x′ do
if rand (0, 1) < ρtime−hop then

shift ti forward or backward one synodic period
end if

end for
run NLP solver to find locally optimal point x∗ from x′

if x∗ is feasible and f (x∗) < f (xcurrent) then
xcurrent = x∗

save x∗ to archive
else if x∗ is infeasible and ‖c (x∗)‖ < ‖c (xcurrent)‖)

xcurrent = x∗

end if
end while
return best x∗ in archive

material [29]. A scoring system was constructed in which 10
points are awarded for the first red Centaur, 10 for the first
blue/grey Centaur, and 1 “bonus” point for Chiron, Chariklo,
or Echeclus. The “bonus” point is allowed to stack with the
classification points. We assume that one body of each class
is sufficient, so the maximum science score for any candidate
mission is 21 points for a mission that includes a red, a
blue/grey, and one of the “special” Centaurs. Table I is a list
of the Centaurs and describes how they are classified for this
example.

We also score each candidate mission by the number of
encounters. In this example the outer-loop is allowed to choose
not only the number of targets and the identity of the targets,
but also whether each encounter is a flyby, in which the
spacecraft matches position only, or a rendezvous, in which the
spacecraft matches both the position and velocity of the object.
A rendezvous is considered to provide greater science value
than a flyby but requires more time and propellant. Accord-
ingly, 10 encounter points are awarded for each rendezvous
and one encounter point is awarded for each flyby.

The spacecraft in this example employs a radioisotope-
electric propulsion (REP), a system composed of a RTG and
a small electric thruster. Such a system is ideal for a mission
such as a multi-Centaur tour, which may need to perform
significant maneuvers in the outer solar system where SEP is
not viable and chemical propulsion cannot provide sufficient
∆v to reach more than one Centaur. This approach was
used for a previous study that considered a rendezvous with
2060 Chiron as part of the 2010 Planetary Science Decadal
Survey [31]. In this study the propulsion system is modeled
as having an Isp of 1500 s and a system efficiency η of
0.485. The available thrust is then computed as a function of

TABLE I: List of classified Centaurs [30]

Name Classification Science score
2060 Chiron BG, special 11
8405 Asbolus BG 10
10199 Chariklo BG, special 11
10370 Hylonome BG 10
60558 Echeclus BG, special 11
29981 BG 10
32532 Thereus BG 10
42355 Typhon BG 10
49036 Pelion BG 10
52872 Okyrhoe BG 10
54598 Bienor BG 10
60608 BG 10
63252 BG 10
73480 BG 10
91554 BG 10
95626 BG 10
119315 BG 10
120061 BG 10
127546 BG 10
248835 BG 10
342842 BG 10
427507 BG 10
5145 Pholus R 10
31824 Elatus R 10
33128 R 10
44594 R 10
52975 Cyllarus R 10
55576 Amycus R 10
65489 Ceto R 10
7066 Nessus R 10
83982 Crantor R 10
87269 R 10
121725 R 10
308933 R 10
469750 R 10

available power via equation 7. The RTG system is modeled
via Equation 9, where the decay rate τ is set to 2% per year.
We assume that P0 is bought in discrete units of 425 W,
with the number of units chosen by the outer-loop solver. The
spacecraft is assumed to require 250 W for non-propulsion
power.

In this example, the outer-loop is allowed to choose the
destination Centaurs, whether each Centaur encounter is a
flyby or a rendezvous, whether or not there will be planetary
gravity assists and if so which ones and how many, the upper
bound on the time of flight, and the number of RTG units.
The inner-loop then finds the trajectory that delivers the most
mass to the final Centaur encounter for each candidate outer-
loop solution. The outer-loop seeks to find the five-dimensional
non-dominated trade surface ranked by power system size,
time of flight, and the science merit score and encounter score
described above. Table II lists the assumptions and solver
settings. There are 2.3 × 1014 solutions to the outer-loop
problem. It is impractical to evaluate all of them, and so the
NSGA-II-based outer-loop in this work is necessary.

The HOCP automaton was run with an outer-loop pop-
ulation size of 300 for 305 generations on a 60-core Intel
Xeon E7-4890 v2 server running at 2.8 GHz. This took
thirteen days with no human intervention. A plot of the final
population is shown in Figure 2. P0, flight time, and mass
are the x, y, and z axes of the plot. Science merit score is
represented as a color, where redder is better, and encounter
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TABLE II: Assumptions common to all candidate Centaur
missions

Option Value
Earliest allowable launch date 1/1/2030
Latest allowable launch date 12/31/2040
Flight time upper bound 10 to 50 years,

chosen by outer-loop
Launch vehicle Atlas V 551 with

Star 48 upper stage
Number of 425 W RTGs 1 to 10
RTG decay rate 2% per year
Spacecraft bus power Ps/c 250 W
Thruster Isp 1500
Thruster efficiency η 0.485
Duty cycle 90%
Power margin 15%
Propellant margin 10%
Number of time steps per phase 20
Centaurs up to four from Table I
Gravity assists (before first Centaur) up to 3 of Venus, Earth,

Mars, and/or Jupiter
Gravity assists (between Centaurs) up to 2 of Jupiter, Saturn,

Uranus, and/or Neptune
Centaur encounter type flyby or rendezvous
Stay time at rendezvous targets 1 year
Outer-loop NSGA-II Population Size 300
Outer-loop NSGA-II µGA 0.15
Inner-loop MBH run time 20 minutes
Inner-loop MBH Pareto α 1.3
Inner-loop MBH ρtime−hop 0.2

Fig. 2: Final generation of the outer-loop, showing non-
dominated solutions

score is represented as marker size. Each marker on the plot
is a separate mission, with a unique combination of objective
function scores. Each mission may have a different power
system, flight time, set of gravity assists, or even different
Centaurs. It is difficult to visualize a 5-dimensional trade space
in a 3-dimensional plot, but in the interactive version one may
rotate the plot and click on individual missions to examine
them in detail. This interface is designed to make it easy for
a team of scientists and flight dynamicists to choose one or
more candidate missions for further study. In all, the HOCP
automaton explored 68963 possible solutions and thus the
inner-loop was run 68963 times. Figure 2 shows only 300
non-dominated missions from that set.

In the interest of brevity, we will examine only three

Fig. 3: A 10 year mission to Chiron (BG, special) using a
1275 W power system, 11 science points, 10 encounter points

Fig. 4: A 24 year mission to fly by 121725 (R) and rendezvous
with Chiron (BG, special) using an 850 W power system, 11
science points, 10 encounter points

trajectories in detail. Figure 3 describes a relatively short 10-
year mission to 2060 Chiron, one of the highest science value
targets. The flight time is short enough for a viable New
Frontiers-class mission but since only one target is reached
the goal of surveying the Centaurs is not accomplished. The
power system is also quite large at 1275 W. Figure 4 shows a
24-year mission to fly by 121725 (red) and then rendezvous
with 2060 Chiron (blue/grey). This mission accomplishes the
objective of surveying the different classes of Centaur and
reaches a high-priority target with a reasonable power system,
but the flight time is quite long. Finally, Figure 5 depicts a 36-
year mission to rendezvous with both 31824 Elatus (red) and
49036 Pelion (blue/grey) using a 1700 W power system. This
mission is the shortest to provide detailed science opportunities
at both classes of Centaur without requiring an extremely
large power system, but at 1700 W the power requirement
already stretches what may be reasonable for next-generation
RTGs. In general, as power increases, flight time decreases and
encounter score and delivered mass increase. Since encounter
score is loosely coupled to science score, more power also
means better science. Any of these missions, or others from
Figure 2, could be selected for further analysis by a scientist
and his or her team.
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Fig. 5: A 36 year mission to rendezvous with 31824 Elatus
(R) and 49036 Pelion (BG) using a 1700 W power system, 20
science points, 20 encounter points

VI. CONCLUSION

This work presents an HOCP automaton that is capable of
mapping the multi-objective trade space between spacecraft
system parameters, trajectory characteristics, and science value
for a wide variety of small body missions. The algorithm
is demonstrated on a hypothetical multi-Centaur tour and
provides a trade-space map that a scientist could use to
choose one or more candidate missions for further study.
The intent of this algorithm is to simplify and speed up the
beginning of the mission proposal process, in which scientists
and engineers search for the right trade between science value
and engineering feasibility that can be turned into a proposal.
The example presented in this work is somewhat fanciful and
is deliberately not tied to any current mission proposal, but
illustrates the capabilities of the algorithm.

The algorithms presented in this work are implemented in
the Evolutionary Mission Trajectory Generator EMTG, NASA
Goddard Space Flight Center’s tool for the preliminary design
of planetary science missions. This tool is an integral part of
Goddard’s current proposal design process, and was used to
support the recently selected Lucy proposal.
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